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Abstract

A diffusion-reaction numerical solver capable of studying the ion transport in a hexagonal struc-

ture is implemented. The simulation is 3-dimensional but computationally efficient by taking

advantage of the cylindrical coordinate system. Further computation reduction is done by reduc-

ing the computation domain six-fold. The implemented solver is utilized to study a simplified

model of archaeal surface layer, which is a charged hexagonal sheet with an opening.
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I. INTRODUCTION

Surface layers (S-layers) are proteinous lattice that are possessed by most of archaea and

some of the bacteria as their outermost envelope [1, 2]. Although structurally diverse, S-

layers’ functions are essentially similar: provide mechanical support and act as a particle

sieve to protect the cell. While the surface topography of the S-layer has been extensively

studied, little is known about the how does the S-slayer serve as a selective barrier. Specifi-

cally, it is well accepted that the pores on the surface would allow or reject specific particles

to enter the cell. However, the mechanism of such sieving remains elusive, e.g. how would

the pore prohibits the entry of particles that are much smaller than its opening.

Methanosarcina acetivorans, for example, possess an S-layer that is consisting of repeat-

ing hexagonal tiles [3]. It is reported that the S-layer of M. acetivorans has a funnel-like

structure, and a center-to-center distance of 12 nm between the pores, whose opening is

roughly 1.3 nm. Arbing et al. find that S-layer of M. acetivorans is negatively charged,

which could be critical for its function.

Ammonia oxdizing archaea (AOA), a major player of the global ammonia cycling, is

another instance of cell that has hexagonal surface layer lattice. An unpublished manuscript

reports that the S-layer of AOA also has pores that have center-to-center distance of 22

nm and shows the evidence that S-layer is negatively charged [4]. Some researchers have

hypothesized that AOA’s S-layer plays a role of facilitating the ammonium oxidization, for

which an enzyme, namely ammonia monooxygenase (AMO), is responsible [5].

In this project, a continuum diffusion-reaction model is built to study the ion transport

near the S-layer of AOA. In particular, special boundary condition (BC) setting is designed

to enable the realization of six-fold symmetry on top of cylindrical coordinate to reduce

computation, as shown in FIG. 1(a) and will be discussed in the following sections. The

simulation model also includes a reaction site, where NH+
4 ions will be consumed, and a

surface layer with negative surface charges and a pore, as shown in FIG. 1(b).
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FIG. 1. Schematic of the simulation domain that will be studied in this project, which is a hexagonal

prism. (a) Top view of the domain. Thanks to the six-fold symmetry, only a 1/6 “pizza slice,” as

indicated by the shaded area, needs to be calculated. (b) Side view of the domain. An S-layer with

a pore is placed in the center of the domain. Negative charges are uniformly distributed on the

two sides of the S-layer. A voxel-large reaction site is placed at the center of the intracelluar space.

Shaded area indicates the area that will actually be computed, while the other half is simply the

flipped version of the shaded area.

II. THEORY

A. Fick’s Laws

Fick’s first law of diffusion is an elegant way to describe the diffusion along a space

coordinate given a diffusion constant and a gradient of concentration:

J = −Ddc

dx
(1)

where J is the flux along the x direction, D is the diffusion constant and c is the concentration

profile and a function of space x. To further describe the diffusion behavior as a function of

time, one might use the following partial differential equation

∂c

∂t
= D

∂2c

∂x2
, (2)

which is known as Fick’s second law. To numerically solve the concentration profile as a

function of time and space, one might discretize a 2-D model into grid cells, and re-write
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eq. (2) as

c(i, j)(t+1) − c(i, j)t

∆t
= D

c(i+ 1, j)(t) − c(i− 1, j)(t)

2∆x
+D

c(i, j + 1)(t) − c(i, j − 1)(t)

2∆y
, (3)

where ∆x and ∆y are the grid size along the x and y direction, respectively. Note here the

central difference is used to represent the second-order finite difference. Finally eq. (1) is

plugged in and (3) is re-arranged, obtaining

c(i, j)(t+1) =c(i, j)t −∆t

[
∂Jx
∂x

+
∂Jy
∂y

]
∂Jx
∂x

=
Jx(i+ 1

2
, j)− Jx(i− 1

2
, j)

∆x
∂Jy
∂y

=
Jy(i, j + 1

2
)− Jy(i, j − 1

2
)

∆y

(4)

where

Jx(i+ 1
2
, j) =−Dc(i+ 1, j)− c(i, j)

∆x

Jy(i, j + 1
2
) =−Dc(i, j + 1)− c(i, j)

∆y

(5)

are the finite difference version of (1). Note here here a half-step (1
2
) is used to indicate

the fact that the grid cells of Jx and Jy are not aligned with that of c; instead, there is a

1
2

offset along the x or y axis, as shown in FIG. 2(a). Given proper initial condition (IC)

and boundary condition (BC) setting, one might update equations (4) and (5) alternately

to build a numerical diffusion solver.

While (1) is for one-dimensional, it is not difficult to write down the Fick’s first law

equation in the cylindrical coordinates:

J = −D∂c

∂r
−D1

r

∂c

∂φ
−D∂c

∂z
, (6)

which has discrete form

Jr(i+ 1
2
, j, k) =−Dc(i+ 1, j, k)− c(i, j, k)

∆r

Jq(i, j + 1
2
, k) =− D

r

c(i, j + 1, k)− c(i, j, k)

∆q

Jz(i, j, k + 1
2
) =−Dc(i, j, k + 1)− c(i, j, k)

∆z
,

(7)

where q is the notation for the discrete angular coordinate. Based on the cylindrical co-

ordinate form of the Lalpace operator, the updating equation of the concentration can be
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formulated as
∂c

∂t
= D∇2c = D

[
1

r

∂

∂r

(
r
∂c

∂r

)
+

1

r2
∂2c

∂φ2
+
∂2c

∂z2

]
, (8)

which has discrete form:

c(i, j, k)(t+1) = c(i, j, k)(t) −∆t

[
1

r

∂

∂r
(rJr) +

1

r

∂

∂q
(Jq) +

∂

∂z
(Jz)

]
, (9)

where Jq, Jq and Jz are already introduced in (7).

B. Poisson-Nernst-Planck equations

In some cases, it is desirable to simulate the diffusion behavior of ions, i.e. charged

particles, which emit and are subject to the influence of electric-fields. It is not difficult to

formulate a Poisson equation given the concentration ck and valence charge ck of the mobile

ion spices k:

−∇ · (ε∇φ) = 4πρf +
∑
k

4πzkck, (10)

where ρf denotes the distribution of fixed charges. To incorporate the Poisson equation into

the updating equations, here I use an alternative, equivalent version [6], which represents

the Poisson equation as electric-field as a function of time

∂E

∂t
= −NAe

ε

∑
k

zkJk. (11)

With the above equation, the updating equation of flux J can be formulated as

Jx =−D [∇xc] +
NAe

RT
DzcEx

Jy =−D [∇yc] +
NAe

RT
DzcEy,

(12)

where T denotes the temperature, R is the gas constant, NA is Avogadro’s number, e denotes

the elementary charge, and z denote the valance charge of the ion.

Finally, one might add a reaction term R(c), which is a function of concentration and

space and write

∂c

∂t
=−∇ · J +R(c)

=−∇ ·
[
−D∇c+

NAeDz

RT
cE

]
− krec
kM

c

NA(∆x)3
δ(x− xrec),

(13)
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which is known as a Poisson-Nernst-Planck (PNP) equation with a reaction term, where

xrec is the position of the reaction site. Again, (13) is just the one-dimensional case which is

good for illustration. To derive a three-dimensional and discrete version, one might modify

(9), obtaining

c(i, j, k)(t+1) =c(i, j, k)(t)

−∆t

[
1

r

∂

∂r
(rJr) +

1

r

∂

∂q
(Jq) +

∂

∂z
(Jz)

]
−∆t

krec
kM

c(i, j, k)(t)

NAπ(∆r)2∆z
δ(i− irec, j − jrec, k − krec),

(14)

where

Jr(i+ 1
2
, j, k) =−Dc(i+ 1, j, k)− c(i, j, k)

∆r
+
NAe

RT
DzEr

c(i+ 1, j, k) + c(i, j, k)

2

Jq(i, j + 1
2
, k) =− D

r

c(i, j + 1, k)− c(i, j, k)

∆q
+
NAe

RT
Dz

Eq

r

c(i, j + 1, k) + c(i, j, k)

2

Jz(i, j, k + 1
2
) =−Dc(i, j, k + 1)− c(i, j, k)

∆z
+
NAe

RT
DzEz

c(i, j, k + 1) + c(i, j, k)

2
.

(15)

III. METHOD

In this project a cylindrical coordinate PNP equation numerical solver is implemented.

The code is written in Matlab. The grid cell size is set to 0.2 nm to properly resolve the the

surface structure. The time step is set to 1 ps to maximize simulation speed while ensuring

simulation stability. In this project, the cell domain of interest is modeled as a hexagonal

prism model in the cylindrical-coordinate system. To transform from a 2-D Cartesian (x, y)

system to a 3-D cylindrical (r, z, φ) system, one can first switch from (x, y) to (r, t) for every

single “slice” of the simulation domain. FIG. 2(a) shows the side view of the simulation

domain, where one can find that is equivalent to an (x, y) grid. The third orthogonal axis in

the cylindrical coordinate is the angle about the central z axis, denoted as q. In this report,

While in a circularly symmetric system, everything should be independent of the angle q,

here q-dependent variables, e.g. Eq and Jq, are still explicitly calculated and kept track of

for generality. Later their values will be examined, which should be all zeros.

FIG. 2(b) shows the geometry arrangement of concentration and flux profiles in a wedge-

shaped cell. Grid of concentration is equally spaced along r and z axis, as shown in FIG. 2(a),

and is spaced by rdq, where r is the position along the radial direction and dq is the angular

6



FIG. 2. (a) Arrangement of grids of concentration c and flux Jr and Jz profiles in a side view.

Electric field Er and Ez has the same grid location as Jr and Jz, respectively. (b) Arrangement of

grids in a wedged cell in a top view.

spacing in the cylindrical coordinate. In this work, dq = 0.5 degrees is chosen to ensure the

resolution at the outermost r ring is still fine enough.

To depict the edge of a hexagonal tile, the position of the boundary along r is modeled

as a function of azimuth angle q. Specifically, as shown in FIG. 3, the distance between the

side of the hexagon and the center, denoted B, is a function of q, and is within the range of

[
√
3
2
C,C]. In other words, when angle α = 0◦, the distance is C, i.e. the circumradius of the

hexagon, while when α = 30◦, B =
√
3
2
C. Using the law of singes, B can be mathematically

formulated as

B = C
sin 60◦

sin(180◦ − 60◦ − α)
, 0◦ ≤ α ≤ 60◦. (16)

Once this distance between the center and the side is known, a BC, e.g. periodic or Nuemann,

can be placed accordingly.

Based on [4], the simulation domain is set to 40 nm (200 px) in height, 11.1 nm (56 px)

in radius. The S-layer is place at the center of the domain, i.e. z = 20 nm. A pore of radius

1.3 nm that allows ions to pass is placed at the center of the S-layer. The surface density of

the negative charges on the S-layer is 0.004e− per nm2. The reaction rate is 10 per second.

Bulk concentration of NH+
4 is set to 10 nM, as literature suggests that AOA can survive in

an environment whose ammonia/ammonium concentration is below detection limit.
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FIG. 3. (a) The hexagonal symmetry model is built on top of the cylindrical coordinate, therefore

the distance between the hexagon side and the central axis is represented as a function of angular

coordinate q. (b) The length of B can be calculated by using the law of sines.

IV. RESULTS

A. Fick solver

The model is first tested with the Fick’s laws equation, which were introduced in Sec.

II A. FIG. 4 shows the simulation results of the Fick solver. FIG. 4(a,b) show a concentration

dip at z = 30 nm, demonstrating the implemented Fick diffusion-reaction solver worked as

expected. FIG. 4(f) shows the convergence of the simulation, which is defined as

convg =

∑
i,j |c

(t)
i,j − c

(t−1)
i,j |∑

i,j c
(t)
i,j

, (17)

where (t) denotes the time-step number.

B. PNP solver

FIG. 5 shows the simulation results of the PNP solver. As shown in FIG. 5(a) and (b),

it is the notable that surface charges on the S-layer greatly elevate the concentration level

by a factor of 107, especially in the setting of very low bulk concentration, where the Debye

length extends to the scale of micronmeters [7].
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FIG. 4. Simulation result of the Fick solver. (a) Concentration profile map at the slice q = 0◦. (b)

Concentration profile along z at r = 0. (c) Concentration profile as a r-q map at z = 30 nm. (d)

Radial flux Jr and (e) azimuthal flux Jq profile at z = 30 nm (arbitrary units). (f) Convergence

vs. time step.

V. DISCUSSION

In Sec. III, it was predicted that the Jq component should be all zeros. However, FIG. 4(f)

and FIG. 5 both show very weird patterns, indicating that the previous prediction is not

true. A way to account for these non-zero values is that these values are due to numerical

error and are hence negligible, which is true, as they are 9 orders of magnitude smaller than

their Jr or Jz counterparts.

An intriguing aspect which was not investigated in this report is that, our implemen-

tation of hexagonal boundary condition might require a certain azimuthal cell resolution.

Theoretically, the higher spatial resolution would give better result, but also require more

computation resources. In fact, the time complexity is O((∆)−4), as the azimuthal grid size

dq and time step size ∆ also depend on the Cartesian grid size ∆x. Therefore, another way

to look at this problem would be: what is the maximal ∆ that the proposed hexagonal BC

scheme would still work.
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FIG. 5. Simulation result of the PNP solver. (a) NH+
4 concentration profile map at the slice q = 0◦.

(b) NH+
4 and the counter-ion concentration profile along z at r = 0. (c) NH+

4 concentration profile

as a r-q map at z = 30 nm. (d) NH+
4 radial flux Jr and (e) azimuthal flux Jq profile at z = 30 nm

(arbitrary units). (f) Convergence vs. time step.

VI. SUMMARY

To sum up, in this project I implemented a 3-D diffusion-reaction model which is special-

ized for hexagonal structure. Using AOA as an example, I studied the transport behavior

of NH+
4 ions in a non-charged setting with a Fick’s equations solver and a PNP equations

solver. The implemented model allows the study of a 3-D model at very low computation

cost thanks to the symmetry of the model domain.
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