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Abstract

We present a Bragg peak detection system based on
YOLO architecture for X-ray crystallography. The 8-layer
convolutional neural network we developed outperforms the
original Yolo2 in Bragg peak detection and achieves similar
performance of Yolo3 but with much fast speed and simpler
architecture.

1. Introduction

Crystallography is a powerful technique that enables the
determination of the inner structure of nanomolecules such
as proteins. In a typical crystallographic setting, an X-
ray with very short wavelength (e.g. 0.1 nm) is shined on
the crystal, whose diffraction pattern, effectively its Fourier
transform intensity, is collected by an area detector [1]. Due
to the repeated units in the crystal, the Fourier transform has
several significantly noticeable bright pixels, namely Bragg
peaks. Figure 1 illustrates the work flow in a typical crystal-
lographic experiment: the detector records the Bragg peaks,
which are located and used to retrieve the crystal’s param-
eters. In order to retrieve the structural information, the
crystallographic data processing pipeline [2] needs to first
locate all of these Bragg peaks. Unlike other object recog-
nition problem, the detection of Bragg peaks is complicated
by that 1) Bragg peaks are fine features that are only up to
7 × 7 pixels large; 2) precise coordinates of Bragg peaks
are required, i.e. prediction error < 1 pixel; 3) There is
only one class of object, i.e. the peak; 4) the intensities of
pixels span across several orders of magnitude, making the
feature normalization very difficult. Such task is currently
done by an exhaustive search algorithm that goes through
every pixel, column by column and row to row, to find the
locations of peak pixels. Although the state-of-the-art peak
finder can precisely locate the peaks on a diffraction image
in less than a second if the user provide reasonable param-
eter, these parameters are, however, sometimes difficult to
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finetune.
LCLS (Linac Coherent Light Source at SLAC National

Accelerator Laboratory), one of the largest free-electron
laser facilities in the world, generates TB of data everyday
1, but little machine learning approaches have been applied
to utilize or explore such “big data.” The pioneering work
by Ke et al. demonstrates the application of deep learning
to the X-ray crystallography data, but the usage is limited to
classifying the data as hit, miss or in between [3]. The work
by Park et al. also employs deep learning for classification
problem, but for crystal structures [4]. Their work outper-
forms the human-level, but the application to the serial fem-
tosecond crystallography (SFX) experiment is unexplored.

Here, we study the application of deep learning approach
to the SFX data by developing a convolutional neural net-
work (CNN) [5] that can detect all of the Bragg peaks and
return the coordinates thereof in one shot. Our network is
based on the architecture of YOLO2 (you only look once),
a unified CNN-based object detection systems [6, 7, 8], but
with significant modification to fit the uniqueness of peak
detection problem, i.e. pixel-level fine features. We use the
diffraction images from the LCLS experiment CXIC0415,
which is public dataset for research and academic purposes.

2. Data
We used a subset of diffraction image dataset from a

LCLS SFX experiment on complex of Streptavidin and Se-
lenobiotin [9] and split the data into three independent sets
for this project 2. Table 1 details the numbers of diffraction
images and Bragg peak instances in the training, validation
and test datasets. Each diffraction image is composed by
64 separate pixel array modules, each has 194× 185 pixels,
which are carefully arranged to receive maximum amount
of diffraction. Data of these module are store in a com-
pact format, a 1552 × 1480 16-bit gray-scale image. Each

1For example, the full volume of CXIC0415, the dataset we use for this
project, totals 18 TB.

2The full dataset is publicly available via the Coherent X-ray Imaging
Data Bank (CXIDB) at http://www.cxidb.org/id-54.html, al-
though we instead accessed the data via an internal interface [2].
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Figure 1. (Top) Crystallographers reconstruct the structure of pro-
teins by collecting the diffraction image, which has a number of
Bragg peaks, and locating all of the peaks. (Bottom) Bragg peaks
are two-dimensional features that are made of few pixels.

Table 1. Number of diffraction images and Bragg peak instances
in each dataset. All datasets have the same distribution. 1% of
data are kept for validation (0.5%) and testing (0.5%).

Dataset Train Val Test Total
# images 199,675 1,000 1,000 201,675
# peaks 12,498,810 63,543 63,917 12,626,270

image is accompanied by a list of peak coordinates which
were found by a brute-force algorithm. The raw pixel values
in each image indicate the ADUs (analog-to-digital units),
which is approximately proportional to the number of pho-
tons a pixel detects. We clamp the pixel value at 10, 000
and re-quantize to 8-bit and output all diffraction image im-
ages to PNG files, as we found this preprocessing largely
reduces the data overhead. The codes for preprocessing the
LCLS experimental data are developed for this project and
are available on the GitHub repository3.

3. Method
We designed a new YOLO architecture which is dedi-

cated to detect the crystallographic Bragg peaks by comb-
ing the strengths of three generations of YOLO net, i.e.
YOLOv1 [6], YOLOv2 [7] and YOLOv3 [8]. One of the
well-known weakness of the YOLO family is that YOLO
often fails to detect small features as YOLO uses a num-
ber of maxpooling to reduce the number of parameters. Al-
though the authors of YOLO already address this issue in
YOLOv3 by using a number of shortcuts, i.e. ResNet archi-
tecture [10] and pyramid detection [11], we still think the
excessive number of striding is harmful for detecting small
features like Bragg peaks. Figure 2 shows our proposed

3https://github.com/leeneil/peaknet

16-layer CNN architecture for YOLO detection, which has
only two maxpooling layers, in the hope to preserve as
many pixel-level features as possible. The first maxpool-
ing layer reduces the image size and the second maxpool-
ing layer aims to provide multi-scale features. The output
features before and after the second maxpooling layers are
then concatenated by using a shortcut and a “reorg” layer,
which rearranges 2 × 2 pixels into a 1 × 1 pixel with 4
feature channels. The final 30 channels are responsible for
the YOLO detection, which needs the x, y coordinates and
width and height of each prediction box, and its objectness
(the probability that there is an object) and the probability
of the class. In this case, we only have one class, which
is the Bragg peak. Five sets of prior are used to facilitated
the predictions, therefore 5 × (4 + 1 + 1) = 30 features
are needed for each pixel at the output layer. Later we will
present alternative design in the hope to increase processing
speed but without sacrificing the performance. The imple-
mentation uses Darknet as the deep learning framework [12]
and custom Python codes for experimentation 4.

For training, we set a fixed box size of 11× 11 so all the
labeled Bragg peak instances have the same size. Setting
a finite box size also ensures that there are sufficient fea-
tures to be learned by the CNN. We compute the IOU (in-
tersection over union) for each predicted box with its near-
est ground truth neighbor. The predicted box is considered
as successful detection if the IOU is larger than 0.5. We
then calculate the sensitivity, defined by the number of true
positives (TP) divided by the number of true positives and
false negatives (FN) combined, and the precision, defined
by the number of TP divided by the number of TP and FP
combined. Although IOU is useful for determining if a de-
tection is successful, in order to quantify the precision of
location prediction, we also calculate the average location
error for each true positive.

4. Experiments

The ultimate goal of the peak detection is twofold: the
precision of detection and the accuracy of the peak location
must meet the standard of crystallography requirement; on
the other hand, the processing speed should be also high
so the detection system might be run on-line, i.e. enabling
real-time analysis when an experiment is being conducted.
To this end, we will focus on the detection precision while
ensuring the number of operation is just sufficient to avoid
unnecessary burden of computations. Table 2 shows the
performance of all network architectures considered. All
tests were performed on a standard Google Cloud Compute
instance with a nVidia K80 graphic processing unit (GPU).
Architecture of PeakNet is same as the one illustrated in

4We used Darknet instead of other popular frameworks simply because
it is written in C and runs significantly faster than others
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Figure 2. Our proposed CNN architecture. A shortcut provides feature maps with less downsampling. The output volumes has size of
194× 185 and 30 features for YOLO detection. The number following the slash indicates the stride number.

Figure 2. PeakNet-Shallow has fewer alternating convo-
lutional layers but same number of filters. PeakNet-Small
has the same depth as PeakNet but only one fourth of filter
number. Lastly, PeakNet-Fat has same depth as PeakNet-
Shallow but four times number of filters as PeakNet. All
architecture were trained on the training set for 6,240 it-
erations (roughly 1 epoch) with mini-batch size of 32 and
learning rate of 0.001. Figure 3 shows the precision vs.
sensitivity plot on the validation data. It is noticeable
that PeakNet-Shallow works generally worse than PeakNet,
while PeakNet-Small shows somehow decent precision at
the cost of low sensitivity, presumably due to the fact the
nature of less filters and hence less over-fitting. Finally,
PeakNet-Fat achieves nearly Yolo3 level performance, but
has less distance error and higher speed. Therefor PeakNet-
Fat is chosen for final testing. Figure 4 shows the detec-
tion result on a representative image from the testing set.
The trade-off between precision and sensitivity can be eas-
ily leveraged by turning the detection threshold.

5. Conclusion

We designed and trained a Bragg peak detection system
which is based on YOLO2. The presented network outper-
forms YOLO2 in detecting Bragg peaks and achieve same
performance as YOLO3, which is much deeper and com-
plex. We experimented several alternative network designs
and compare their performance by using the metrics of sen-
sitivity, precision and speed. The future works include op-

Table 2. Comparison of all architectures studied. Detection thresh-
old is fixed to 0.25 for all architectures. Spe(ed): average
time needed to process a image in milliseconds. Sen(sitivity):
TP/(TP+FN). Pre(cision): TP/(TP+FP). Dis(tance): average dis-
tance between the true and predicted peak location. IOU: average
IOU. Dis. and IOU are conditioned on successful detection, i.e.
IOU > 0.

Architecture Spe Sen Pre Dis IOU
PeakNet 465 0.076 0.880 0.82 0.15
PeakNet-Shallow 557 0.004 0.787 1.08 0.18
PeakNet-Small 347 0.134 0.945 0.75 0.23
PeakNet-Fat 760 0.683 0.831 0.82 0.30
Yolo3 845 0.820 0.740 0.85 0.35

timizing the network design, e.g. number of convolutional
layers and number of filters, for maximum precision/speed
ratio, and to train the network on different experimental data
to further generalize the detection system.
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Figure 3. Precision vs. sensitivity comparison of all architectures
considered. Precision/sensitivity is tuned by changing the detec-
tion threshold, from 0.005 to 0.5.
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Figure 4. Peak detection on a diffraction image from the testing set. (a) Cyan and pink boxes mark the Bragg peaks of ground truth labels
and predicted by the CNN, respectively. In this case, the CNN achieves sensitivity of 0.79, precision of 0.85 and error distance of 0.84 at
threshold of 0.25. (b) Zoom in of the yellow box region in (a). (c) The region as (b), but threshold value is 0.1. The excessive number of
false positives drops the precision to 0.46. (d) The region as (b), but threshold value is 0.4. The precision is 1 as every detection is a true
positive, but at the cost of very low sensitivity, in this case 0.24.
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