
CS229 term project: Data classification for diffraction images

Po-Nan Li∗

liponan@stanford.edu
(Dated: June 28, 2018)

We use convolutional neural network to implement a data classifier for diffraction images from
serial femtosecond crystallography to identify hit imaging events. The trained network can predict
hit events with up to 98% sensitivity and predict miss events with up to 97% specificity on validation
data.

I. INTRODUCTION

X-ray free-electron laser (XFEL) facilities, such as
Linac Coherent Light Source (LCLS) at the SLAC Na-
tional Accelerator Laboratory, have enable new ways of
studying structures of biological cells or nano-particles
and their dynamics. The light source illuminates a sam-
ple with up to 1012 photons in a single ultrafast pulse,
providing both high temporal and high spatial resolu-
tion imaging. Combined with diffraction imaging tech-
niques such as serial femtosecond crystallography (SFX)
[1] or coherent diffraction imaging (CDI) [2], such pow-
erful light sources recently have been employed to study
the Å-scale structure and dynamics of proteins, which
are otherwise elusive.

LCLS currently operates at a repetition rate of 120
Hz, i.e., data is generated at 120 snapshots per second
from a megapixel camera, generating a huge volume of
data (many TBs per experiment). While such “big data”
are potentially very informative, the transfer and storage
can be costly, and among them a considerable portion
of images, up to 80%, doesn’t contain signal from the
sample; in other words they are “misses,” like the one
shown in FIG. 2(a). It is therefore desirable to have an
efficient approach that can identify and categorize hit
events in an online fashion.

To address these problems, here we develop a frame-
work for rapid data classification. Naively, “hit” and
“miss” images can be distinguished by measuring the to-
tal intensity recorded in a single image; however such
approach can be vulnerable if the background scattering
is strong and/or the signal is faint. This project aims
to employ machine learning methods to look into a large
volume of LCLS image data, and classify them as “hit”
or “miss”. We capitalizes on the “big data” nature of
LCLS experiments, which generate millions of images, to
train and test our algorithm. The impact of rapid and
accurate image classification and interpretation is highly
significant: fast online and offline experimental data anal-
ysis will reduce the need of data transfer and storage, and
improve the data quality.

Here we train a 18-layer convolutional neural network
(CNN) on experimentally measured free-electron laser

∗ Current address: Department of Electrical Engineering, Stanford
University, CA, USA

diffraction images of protein crystals to classify hit or
miss. Since hit events are relatively rare in the whole
volume of data, we will particularly emphasize the true
positive rate, a.k.a. sensitivity. Besides, we will also
discuss methods for preprocessing data so the presented
framework can be extend to different samples and exper-
iment settings.

II. RELATED WORK

Due to the big-volume nature of imaging experi-
ments, automated clustering algorithms are always de-
sired. Yoon et al.[4] and Duan et al.[3] have have demon-
strated the application of principal component analysis
(PCA) for single particle imaging (SPI) and for transmis-
sion X-ray microscopy (TXM), respectively. Tokuhisa et
al.also studied a classification pipeline that analyzes im-
ages’ similarity [5].

Though deep learning and CNN [6] have been exten-
sively utilized for literally every aspect of life, little has
been done for applying them to XFEL imaging. Yann et
al.applied CNN for classification of protein, in real space
but not spectral space [10]. Wang et al.trained CNN on
simulated diffraction images, but didn’t discuss the ap-
plication for crystallographic data.

III. DATASET AND FEATURES

A. Diffraction images

Here we look into the serial femtosecond crystallogra-
phy (SFX) imaging data of streptavidin, a extensively
used and studied protein in biology [8]. FIG. 1 shows
the reconstructed structure in a cartoon fashion. The ex-
periment captured the diffraction patterns of crystallized
streptavidin in 10 sequential experiment “runs,” num-
bered 90 – 96 and 98 – 100, 97 being an empty run.
Depending on the time period the run was executed, a
run is consisting of up to ten thousands of event, each
event including a 1750× 1750 2D gray-scale image. If an
event was a hit, its image should record several Bragg
peaks, which can be used to calculate the correspond-
ing crystal structure. This project aims to identify the
hit images, or equivalently images with Bragg peaks. To
speed up training and testing and reduce the need of



2

memory, we crop images to its central 350 × 350 region,
where Bragg peaks (if any) are preserved. Note here we
only crop the images, rather than downsample, in order
to preserve Brag peaks, which are typically one-pixel big.
FIG. 2(b) shows an example of a preprocessed hit image,
where several hot pixels can been seen.

FIG. 1: Cartoon of streptavidin complex.

B. Labeling

Technically there is no formal definition for hit or
miss, as the diffraction pattern is elusive until it is re-
constructed to a real-space image. In order to label the
data, we use an algorithm to find Bragg peaks in each
image, and if the number of found peaks is larger than a
given threshold then we say it’s a hit, otherwise a miss.
FIG. 3 exhibits the labels of run 90, where events whose
number of peaks is below 2 is marked as miss, above 10
is marked as hit; others are dropped from training and
testing data, as in practice they ambiguously can be hit
or noisy miss events.

IV. METHOD

In this project we implement and train a convolutional
neutral network (CNN) to perform data classification.
While there are several candidates out there, such as lin-
ear regression, support vector machine (SVM) and clus-
tering [3], we choose CNN because it is potentially capa-
ble of revealing “hidden science” behind the diffraction
images and is shift-invariant to the features on the image.
Specifically, CNN might be able to discover structures
that only exist in hit images, such as faint Bragg peaks
buried in the noise. Here we employ a multi-layer CNN
implemented by using Keras [12] with TensorFlow [13] as
backend, which consists multiple 2-D convolution, max-
pooling, dropout, batch normalization, fully-connected
layers, and an output layer. For example, FIG. 4 visual-
izes the four filters in the first convolution layer. Table I
shows the full architecture of our CNN model. Dropout
layers are used to prevent over-fitting; sample-wise (lay-
ers 3 and 7) and feature-wise batch-normalization layers
are also implemented to regulate value range of data. We
use cross-entropy as loss function, and stochastic gradi-

(a) A ‘miss” event

(b) A “hit” event

FIG. 2: Example of a (a) miss and (b) hit event. Note
(b) contains several pixel-big Bragg spots, which have

high pixel value.

FIG. 3: Number of peaks vs. event index in run 90.
Blue circles mark the events with hit labels; red crosses
mark the events with miss labels. Others are dropped

from training and testing as they are practically
ambiguous.



3

TABLE I: Architecture of our CNN. Conv: 2-D
convolution layer. Drop: dropout. BN: batch

normalization. ReLU: rectified linear unit. Max:
max-pooling. Flat: flatten. FC: fully-connected.

Layer Type Output shape Filter size # params
0 Input 350 × 350 × 1 - 0
1 Conv 344 × 344 × 4 7 × 7 200
2 Drop 344 × 344 × 4 - 0
3 BN 344 × 344 × 4 - 688
4 ReLU 344 × 344 × 4 - 0
5 Max 68 × 68 × 4 - 0
6 Conv 62 × 62 × 4 7 × 7 788
7 BN 62 × 62 × 4 - 124
8 ReLU 62 × 62 × 4 - 0
9 Max 12 × 12 × 4 - 0

10 Drop 12 × 12 × 4 - 0
11 Flat 576 - 0
12 FC 16 - 9232
13 BN 16 - 32
14 ReLU 16 - 0
15 Drop 16 - 0
16 FC 16 - 34
17 ReLU 16 - 0

ent descent (SGD) as optimizer, with parameters learn-
ing rate 0.002, learning rate decay 0.0001, momentum
0.9, and batch size 100.

FIG. 4: Trained filters in the first 2-D convolution
layer.

V. RESULTS

A. Cross-run validation

We validate our trained CNN by predicting on 10 ex-
periment runs, including 3 runs that have been used for

TABLE II: Prediction results on training data (runs 90
– 93) and validation data (runs 94 –96 and 98 – 100).

Sen: sensitivity. Spe: specificity. Acc: accuracy.

Run # events % hit Sen Spe Acc
90 11429 0.3366 0.9974 0.8685 0.9119
91 4755 0.3171 1.0000 0.9593 0.9722
92 14244 0.0791 0.9663 0.9442 0.9459
93 5820 0.2864 0.9754 0.9839 0.9814
94 13820 0.3727 0.8794 0.9451 0.9206
95 12647 0.1468 0.9822 0.9728 0.9741
96 12157 0.3822 0.9884 0.9113 0.9408
98 14208 0.0934 0.8734 0.6071 0.6320
99 11081 0.8471 0.9892 0.1488 0.8608

100 10730 0.4781 0.9004 0.5705 0.7282

training, and other 7 runs that CNN had never seen.
Table II shows the prediction results, where accuracy is
defined as the percentage of events that are correctly clas-
sified, and the definitions of sensitivity (sen.) and speci-
ficity (spe.) will be discussed in the following paragraph.

B. Confusion matrix

In a real setting of XFEL imaging, despite the high
frequency operation, a large portion of events doesn’t
contain signal from the sample. As as result, we should
emphasize the importance of sensitivity of the prediction,
defined as TP/(TP + FN), where TP and FN are the
percentages of true positive and false negative, respec-
tively. On the other hand, we don’t want to classify a hit
event, which is very rare and valuable, as miss. So speci-
ficity, defined as TN/(TN +FP ), where TN and FP are
true negative and false positive rates, is also expected to
be high. Further, we can analyze the confusion matrix
of the prediction. FIG. 5(a) shows the confusion matrix
on run 93, which is a subset of training data. FIG. 5(b)
shows the confusion matrix on run 95, which is a subset
of testing data.

C. Cross-experiment validation

To test the robustness of the trained CNN, we also use
it to predict on data from other XFEL experiments. Un-
fortunately the CNN fails. Possible reasons are discussed
in the following section.

D. Computation time

Our CNN takes roughly 12 ms to predict an cropped
image, whereas a peak finding algorithm which is cur-
rently being used at LCLS takes roughly 1.4 s to find the
peaks on the same image. For the purpose of identifying



4

(a)

(b)

FIG. 5: Confusion matrix of the CNN on (a) run 93
and (b) run 95.

hit events, our CNN outperforms traditional method by
a 100-fold faster speed.

VI. DISCUSSION

While in general our CNN achieves very high classifica-
tion accuracy, we should point out that the false positive
rate of prediction is generally higher than the false nega-
tive rate, which suggests that a portion of miss events is
incorrectly identified as hit. This might be due the na-
ture of noisy diffraction images, which contain random

pepper and salt pixels. Besides, the CNN didn’t work
well with a few runs, e.g. runs 98, 99 and 100, where the
prediction accuracy drops below 90%. This might be ex-
plained by the fact that each run has distinct experiment
condition, e.g. flux level and sample concentration. We
are now working on a better data preprocessing pipeline
to eliminate such discrepancies across different runs or
experiments.

In addition, we notice that, as a rule of thumb, with
the data size currently available to us, the total num-
ber of parameters of the CNN should be less than
10 thousands; otherwise it would be more difficult to
train. While compared with practical image recoloniza-
tion problems, binary classification is relatively easy, we
found the CNN needs at least three convolutional layers
to be useful. Utilization of published CNN architectures
such as GoogleNet, AlexNet or VGG16 is currently under
investigation.

VII. CONCLUSION

We implemented and trained a CNN that can clas-
sify diffraction images into miss or hit. Our frame-
work achieves both high sensitivity for hit events and
high specificity for miss events. The developed approach
might be utilized at an X-ray imaging beambine in an
on-line fashion to reduce the burden of data analysis and
transfer.

VIII. ACKNOWLEDGMENT

This research project was jointly supervised by SLAC
scientists Dr. Henry van den Bedem and Dr. Chun Hong
Yoon. I am grateful for their mentorship, and I also thank
them for providing access to large experimental datasets
and computing resources at SLAC.

[1] J. Tenboer et al., Science 324, 1246 (2014).
[2] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature

400, 342 (1999).
[3] X. Duan et al., Sci. Rep. 6, 34406 (2016).
[4] C. H. Yoon et al., Opt. Exp. 19, 16542 (2011).
[5] A. Tokuhisa et al., J. Synchrotron. Rad. 20, 899 (2013).
[6] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Proc.

IEEE 86 2278 (1998).
[7] C. H. Yoon et al.., Sci. Rep. 6, 24791 (2016).
[8] M. S. Hunter et al., Nature. Comm. 7, 13388 (2016).

[9] A. Berntson, V. Stojanoff, and H. Takai, J. Synchrotron
Rad. 10, 445449 (2003).

[10] M. L.-J. Yann and Y. Tang, Proc. AAAI, 1373 (2016)
[11] B. Wang, K. Yager, D. Yu, and M. Hoai,

arXiv:1611.03313 (2016).
[12] Chollet and François, Software available from https://

github.com/fchollet/keras (2015).
[13] M. Abadi et al., Software available from http://

tensorflow.org (2015).


